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Outline

• Review last class and homework

• Apply material from last class to 
mechanical vibrations

• Higher order equations with constant 
coefficients
– Homogenous and nonhomogenous 

solutions

• Existence and uniqueness of solutions 
for higher order equations
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Review Undetermined Coefficients
• Used for constant coefficient equation 

y’’ + ay’ + by = r(x)
• Solution is y = yP + yH, where yH is 

solution of yH’’ + ayH’ + by = 0
• Postulate a solution for yP following 

guidelines on next two charts
• Plug solution into ODE and solve for 

unknown coefficients
– Overall coefficients of like terms on both 

sides of ODE must vanish
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Table of Trial yP Solutions

For these r(x) Start with this yP

r(x) = Aeax yP = Beax

r(x) = Axn yP = a0 + a1x + … + anxn

r(x) = Asin t
yP = B sin t + C cos t

r(x) = Acos t

r(x) = Aeaxsin t yP = eax (B sin t  + C 
cos t)r(x) = Aeaxcos t
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Special Rules
• If the right-hand-side, r(x) consists of 

more than one term from the previous 
table, use a yP that contains all the 
corresponding yP terms
– For r(x) = Acos bx + Cedx, use yP = E sin bx 

+ F cos bx + Gedx

• If r(x) is proportional to a solution for the 
homogenous equation, use yP equal to 
x times the yP shown in the table
– For a double root, multiply table yP by x2
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Review Parameter Variation

• Want to solve linear equation

• Have to solve homogenous equation 
to get two (LI) solutions y1 and y2

• Define W from these two solutions
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Review Parameter Variation II
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• Define u(x) and v(x) such that yP = y1u 
+ y2v,  where u and v are found from 
the following integrals

• Get y = yH + yP and evaluate constants 
in yH solution from initial conditions
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Nonhomogenous Summary
• Undetermined coefficients is simpler 

approach but is limited
– Constant coefficient equations
– Limited set of functions

• Variation of parameters is more 
complex, but handles more cases

• In reality, there are no general methods 
to get homogenous solution to linear, 
second-order ODE without constant 
coefficients
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Higher Order Equations
• General nth order linear equation

• Treatment similar to second order

• Look at homogenous solution first

• Combine with particular solution

• Must consider ODE with constant 
coefficients to get any general results
– This is similar to second order
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Higher Order Equations II

• Look at general nth order differential 
equation with constant coefficients
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• Find yH from homogenous ODE
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Higher Order Equations III

• In homogenous solution, the values of 
k are solutions to the equation n + an-1 

n-1 + an-2 n-2 + ··· + a1  + a0 = 0

• Complex solutions occur as complex 
conjugates giving sines and cosines

• For double roots k = DR, we modify 
solution to give (Ck + Ck+1x ) e(DR)x
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Higher Order Equations IV

• For nonhomogenous equations we can 
find the total solution y = yH + yP

• yP may be found by undetermined 
coefficients or variation of parameters
– Use same process for method of 

undetermined coefficients

– Variation of parameters is more complex 
since it involves solution of simultaneous 
equations for new solutions
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Higher Order Equations V

• There are n linearly-independent 
solutions to a linear, homogenous nth 

order ODE
• The n linearly-independent solutions 

form a basis for all solutions
– Use same process for method of 

undetermined coefficients
– Variation of parameters is more complex 

since it involves solution of simultaneous 
equations for new solutions
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Existence and Uniqueness

• General linear, homogenous, nth order 
ODEs have a unique solution over a < x 
< b if all the pk(x) are continuous there
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• The proposed solutions yk(x) to the 
homogenous ODE are linearly 
independent if the Wronskian (see next 
chart) is nonzero
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Wronski Determinant

• Wronskian, W, for nth order ODE (with 
notation that y(k) denotes dky/dxk)
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Application: Structural Member

• An elastic beam with an applied load, 
f(x), per unit length, in the y direction 
(normal to the beam)
– Beam is bent under this load

– Bending moment, M(x) is given by second-
order ODE: d2M/dx2 = f(x)

– Final deflection is d2y/dx2

– M = EI d2y/dx2 where E is Young’s modulus 
and I is moment of inertia
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Structural Member ODE
• Combine d2M/dx2 = f(x) and M = EI 

d2y/dx2 to get EId4y/dx4 = f(x)
– SI units for these quantities are meters for x 

and y, N/m2 for E, m4 for I, N/m for f(x), and 
N·m for M

– dimensions for nth order derivative are 
dimensions of numerator divided by 
(denominator dimensions)n

– Have a total of four boundary conditions at x 
= 0 and x = L

– Equation has separable solution
18

Solving the Equation

• Apply boundary conditions to find 
constants of integration
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Application: Forced Vibrations
• Last week we showed solutions for free 

vibrations of spring-mass-damper 
system

• ODE was md2y/dt2 + cdy/dt + ky = 0
• Imposed force gives nonhomogenous

ODE md2y/dt2 + cdy/dt + ky = f(t)
• Consider example where f(t) = F0cos t
• Undetermined coefficient trial solution is 

yP = A sin t + B cos t
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Forced Vibrations II

• Derivatives of yP = A sin t + B cos t

• yP’ = A cos t - B sin t

• yP’’ = - 2 A sin t - 2 B cos t

• Substitute into ODE: md2y/dt2 + cdy/dt + 
ky = F0 cos t

• m [- 2 A sin t  - 2 B cos t]              
+ c [  A cos t - B sin t]                   
+ k [A sin t   +  B cos t] = F0 cos t
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Forced Vibrations III

• Rearrange to collect sines and cosines

• m [- 2 A sin t  - 2 B cos t]              
+ c [  A cos t - B sin t]                   
+ k [A sin t   +  B cos t] = F0 cos t

• [-m2 A – cB + kA] sin t  +                   
[-m2 B + cA + kB] cos t = F0 cos t

• Equate coefficients of sine and cosine 
terms on both sides of the equation
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Forced Vibrations IV
• [-m2 A – cB + kA] sin t + [-m2 B + 

cA + kB] cos t = F0 cos t
• (-m2 + k)A – cB = 0  (sine terms)
• cA – (-m2 + k)B = F0 (cosines)
• Cramer’s rule solution gives
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Define 0
2 = k/m in Solution
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Undamped Case, c = 0
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• yP = A sin t + B cos t = B cos t 
• From last week,  yH =  C sin 0t  + 

Dcos 0t = E cos(0t + )
• Look at initial conditions
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Undamped Case II
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• Initial conditions y(0) = y0 and y’(0) = v0

• y0 = D + F0/m/(0
2 – 2)

• v0 = 0 C
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Undamped Case III

• y/y0 is a function of 0t and the following 
three (dimensionless) parameters: 
v0/0y0, F0/ky0 and /0
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Undamped Case IV

• Start with solution below and convert 0t 
sine and cosine terms to a cosine term
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Undamped Case V

• Compute dimensionless C and 
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Undamped Case VI
• y/y0 is a function of 
0t, v0/0y0, F0/ky0, 
and /0
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Zero Initial Conditions

• Without forcing (F0 = 0), when y0 = v0 = 
0, the solution is y = 0 for all t

• Forcing gives a nonzero solution

• Start with general solution for c = 0
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• v0 = y’(0) = 0 gives C = 0 

• y0 = y(0) = 0 gives D = -F0/m/(0
2 – 2)
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Zero Initial Conditions II

• Rearrange solution for c = y0 = v0 = 0

• Plot yk/F0 versus 0t with /0 as a 
parameter
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Resonance Condition

• Current equation for y/y0 has several 
terms with 1 – 2/0

2 in denominator
• Solution is not valid when  = 0

• If  = 0, r(x) = F0cos t is proportional 
to homogenous equation solution

• Have to get new particular solution
• Use undetermined coefficients 

approach starting with yP = t [A sin t + 
B cos t]

34

c = 0 Resonance Solution II
• Remember  = 0 = (k/m)1/2 here
• Derivatives of yP = t[A sin t + B cos t]
• yP’ = t[A cos t - B sin t] + A sin t 

+ B cos t
• yP’’ =  t [ -2 A sin t  - 2 B cos t ]  + 

2 A cos t - 2 B sin t 
• Substitute into ODE for c = 0 and m = 

k2:  md2yP/dt2 +  kyP =  md2yP/dt2 +   
m 2 yP = F0 cos t

35

c = 0 Resonance Solution III
• m t [- 2 A sin t  - 2 B cos t]               

+  m [ 2 A cos t - 2 B sin t ]                  
+ m 2 t [A sin t   +  B cos t] = F0 cos t

• After cancellations we have m [ 2 A cos 
t - 2 B sin t ] = F0 cos t

• This gives B = 0 and A = F0/2 m 
• yP = [F0/2m] t sin t
• Particular solution increases without 

bound as t increases
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Examine Damping

• Damped oscillations without external force
– derived (homogenous equation) solutions last 

week

– Three cases: underdamping, critical damping, 
and underdamping

– All cases show y goes to zero as t increases

– Look at particular solution only to show effect 
of forced oscillations

– Effects come from amplitude of oscillations
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General Case for c  0

• Convert  yP = C sin t + D cos t = E 
cos(t - ) to examine amplitude

• C2 + D2 = E2 and  = tan-1(C/D)
• Apply this to write yP = E cos(t - )
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Find  that Maximizes C
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Amplitude of yP versus 
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• Maximum amplitude equation not valid if 
c2/2m2 > 0

2 = k/m
• Look at behavior of yP = C cos(t - ) by 

examining C versus 
• Write dimensionless equation for C, 

which has dimensions of length
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Amplitude of yP versus  II
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• Dimensionless amplitude depends on 
/0 and c2/m20

2 = c2/mk
• Previous result: (2/0

2)max = 1 - c2/m20
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c* = 2.00

c* = 1.00

c* = 0.50

c* = 0.25

c* = 0.20

c* = dimensionless 
damping = c/0m

• As 
c2/m20

2

becomes 
smaller, 
location of 
/0 for 
maximum 
becomes 
one and 
maximum 
amplitude 
becomes 
m0/c
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Summary

• General solutions for ODEs with order n 
 2 for constant coefficients only
– Solutions are series of e

k
x terms where k

are solutions of algebraic equation

– Special cases: double and complex roots

• Get general solution as y = yH + yP

– Use method of undetermined coefficients 
(simpler than variation of parameters) to 
find yP


