Second and Higher Order Linear October 9, 2017
Differential Equations

Second and Higher Order Linear Outline
Differential Equations * Review last class and homework
* Apply material from last class to
Larry Caretto mechanical vibrations
Mechanical Engineering 501AB » Higher order equations with constant
Seminar in Engineering Analysis coefficients
— Homogenous and nonhomogenous

solutions

« Existence and uniqueness of solutions
for higher order equations

October 9, 2017

orthridge

Review Undetermined Coefficients Table of Trial y, Solutions

» Used for constant coefficient equation

y" +ay’ + by = r(x) For these r(x) Start with this yp
« Solution is y = yp +y,,, where y,, is r(x) = Ae> Yp = BeX

solution of y,,” + ay,’ + by =0 r(x) = Axn Yp=agtaXx+ ... +ax"
« Postulate a solution for y,, following ((x) = Asin ot .

guidelines on next two charts Yp = B sin ot + C cos ot
« Plug solution into ODE and solve for r(x) = Acos ot

unknown coefficients r(x) =Ae¥sin ot |y, =e*(Bsinot +C

— Overall coefficients of like terms on both r(x) = Ae®cos ot cos wt)

sides of ODE must vanish

Californin State University Californin State University
Northridge Northridge

Special Rules Review Parameter Variation
» If the right-hand-side, r(x) consists of « Want to solve linear equation
more than one term from the previous )
table, use a y; that contains all the dfz'ju p(x)d—y+ a(x)y =r(x)
corresponding yp terms dx dx
—For r(x) = Acos bx + Ce®, use yp = E sin bx * Have to solve homogenous equation

d .
+ Fcos bx + G.e ’ . to get two (LI) solutions y, and y,
« If r(x) is proportional to a solution for the . Define W f th i luti
homogenous equation, use y, equal to efine Wirom these two solutions
x times the y, shown in the table Wy dy, dy,
=y, 22y, 2L

— For a double root, multiply table y, by x? R Y2 dx

Californin State University Californin State University
Northridge Northridge
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Differential Equations

Review Parameter Variation Il

» Define u(x) and v(x) such that y, = y,u
+Yy,v, where u and v are found from
the following integrals

IS AC VU A C
W (x) W(x)
Yp =YiU+Y,V=-Y, L(X)dXerz L(X)dx

W (x) W (x)

* Gety =y, + Yy and evaluate constants
in y,, solution from initial conditions

Californin State University
Northridge

Nonhomogenous Summary

» Undetermined coefficients is simpler
approach but is limited
— Constant coefficient equations
— Limited set of functions

* Variation of parameters is more
complex, but handles more cases

« In reality, there are no general methods
to get homogenous solution to linear,
second-order ODE without constant
coefficients

Californin State University
Northridge

Higher Order Equations

» General nt" order linear equation
d"y d"ly
dx" dx"?

» Treatment similar to second order

» Look at homogenous solution first

» Combine with particular solution

» Must consider ODE with constant
coefficients to get any general results

— This is similar to second order
Californin State Unhersty
Northridge

#pa00 S 300 T 0y = 1)

Higher Order Equations Il

 Look at general nt order differential
equation with constant coefficients
n n-1
d 2/ + aﬂfl d n—)l/
dx dx
* Find y,, from homogenous ODE
d"y, d"lyy,
dx> " odxt

d
+«~+aid—i+aoy=r(x)

+--«+a1ddL;+a0yH =0

n

. A X

» Homogenous solution Yy = z C.e™
k=1

Californin State University
Northridge 10

Higher Order Equations Il

n

. X

« Homogenous solution Yy = E C.e™
k=1

* In homogenous solution, the values of
Ay are solutions to the equation A" + a,,;
Al+a A2+ +a h+tay=0

» Complex solutions occur as complex
conjugates giving sines and cosines

* For double roots A, = DR, we modify
solution to give (C, + C,,;x ) eCRX

Californin State University
Northridge

Higher Order Equations IV

» For nonhomogenous equations we can
find the total solutiony =y, + yp
* yp may be found by undetermined
coefficients or variation of parameters
— Use same process for method of
undetermined coefficients

— Variation of parameters is more complex
since it involves solution of simultaneous
equations for new solutions

Californin State University
Northridge 1
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Higher Order Equations V
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 There are n linearly-independent
solutions to a linear, homogenous nth
order ODE

» The n linearly-independent solutions
form a basis for all solutions
— Use same process for method of
undetermined coefficients

— Variation of parameters is more complex
since it involves solution of simultaneous
equations for new solutions

Californin State University
Northridge e

Existence and Uniqueness

» General linear, homogenous, nt" order
ODEs have a unique solution over a < x
< b if all the p,(x) are continuous there

d ny d n—ly
dx" dx™*

d
P00 G+ P+ o0y =0
* The proposed solutions y,(x) to the
homogenous ODE are linearly
independent if the Wronskian (see next
_chart) is nonzero

Calsfornia State Linfversity
Northridge 1

Wronski Determinant

» Wronskian, W, for nth order ODE (with
notation that y® denotes d<y/dxk)

Y1 Y, Ys o0 0 Yy

(] ) @) @
YooY Ye o e Yy

(2) (2) (2) (2)
w=[" e R :

(n) (n) (n) (n)
VA Y> Y3 e Yy

Californin State University
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Application: Structural Member

« An elastic beam with an applied load,
f(x), per unit length, in the y direction
(normal to the beam)

— Beam is bent under this load

— Bending moment, M(x) is given by second-
order ODE: d2M/dx2 = f(x)

— Final deflection is d2y/dx?

— M = El d?y/dx2 where E is Young’'s modulus
and | is moment of inertia

Californin State University
Northridge 1

Structural Member ODE

e Combine d2M/dx2 = f(x) and M = ElI

d2y/dx2 to get Eld*y/dx* = f(x)

— Sl units for these quantities are meters for x
and y, N/m2 for E, m# for I, N/m for f(x), and
N-m for M

— dimensions for n" order derivative are
dimensions of numerator divided by
(denominator dimensions)”

— Have a total of four boundary conditions at x
=0andx=L

— Equation has separable solution

Californin State University
Northridge v

Solving the Equation

ME 501A Seminar in Engineering

Analysis

dy 1 dy_1

o' El dx®  El
d3

Z :éj(f f (x)dx}lx+C1x+C2

f(x)dx+C,

dx

% :éj‘[m f(x)dx)jx}j“clxz +C,x+C,

dy 1 3 2

&ZEI{[“U f(x)dx)jx}jx}dwrclx +C,x“+C,x+C,

 Apply boundary conditions to find
constants of integration

Californin State University
Northridge 1
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Application: Forced Vibrations

 Last week we showed solutions for free
vibrations of spring-mass-damper
system

» ODE was md?y/dt? + cdy/dt + ky =0

» Imposed force gives nonhomogenous
ODE md?y/dt? + cdy/dt + ky = f(t)

» Consider example where f(t) = F,cos ot

» Undetermined coefficient trial solution is
Yp = Asin ot + B cos ot

19

Forced Vibrations I

* Derivatives of y, = A sin ot + B cos ot
* y¥p' = ®A c0S ot - ®B sin ot
* yp' = - w? Asin ot - ®® B cos ot
 Substitute into ODE: mdZ2y/dt? + cdy/dt +
ky = F, cos ot
* m[-w? Asin ot - »? B cos wt]
+c[ oA cos ot - ®B sin ot]
+ k[Asin ot + B cos ot] = F,cos ot

20

Forced Vibrations Il

» Rearrange to collect sines and cosines
e m[-®? Asin ot - ®® B cos ot]
+c[ oA cos ot - ®B sin wt]
+k[Asinot + B cos ot] = F,cos ot
* [mo?A-cwB + KkA] sin ot +
[-m®? B + coA + kB] cos ot = Fycos ot
» Equate coefficients of sine and cosine
terms on both sides of the equation

Californin State University
Northridge "

Forced Vibrations IV

* [-Mmw?A - coB + kA] sin ot + [-mw?B +
CoA + kB] cos ot = F,cos ot

e (-mw?+ k)A— coB =0 (sine terms)

. CoA — (-mw? + k)B = F, (cosines)

e Cramer’s rule solution gives

0 - k—-mo® 0
A F, k-mao® B ac F,
k-mo® -—ac k-meo® -—ac
ac k —ma? ac k —ma?
Northr'ulﬁt »

Define ®,? = k/m in Solution

0 -ac k-me® 0

A F, k-mae? _ o F
k-ma? -—ac k-ma? -—ac
e k-mo® e k-mao®

Fyoc Fy(k—mo?)

A= B= >

(kfma)z)ana)zc2 (kfma)z) +w?c?

A F,ac B = mFO(a)gfa)z)

2
m?(w -0 | + w'c? m? (w2 -0 | + wc?

Californin State University
Northridge x

Undamped Case, c =0

F,ac

2( 2 2 ) 2.2 =0
m (wo - ) +o’c
mFO(wgfa)z) mFO(a)gfa)z) ) Fooo

= 2 =/ 2 2),

mz(a)o2 —a)z)z +o’c’ mz(a)g —a)z)r m(wo - )'

B=

* From last week, y, = Csin oyt +
Dcos gt = E cos(mgt + )
* Look at initial conditions

Californin State University
Northridge 24
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Undamped Case Il Undamped Case Il

i FO FO Fo
Y=Y, +Y, =Csinayt+Dcosaw,t + cos ot =

e o ()] ] [ %]

* Initial conditions y(0) = y, and y’(0) = v,

. = 2 _ 2
Yo=D+ Folm/(wo ® ) ;’ y sinawyt +|1— /y° cos wyt + /y" cos[ﬁwotj
. o @Yo _ 1-@ j (2
Vo =0 C ( %JJ [ Ao
Vy . F F . . .
y =;‘;sm wot+[yo ot 0_wz }COS%H mlo? "_wz cos ot e ylyyis a.functl_on of @yt and the following
. . three (dimensionless) parameters:
Y _ Vo o B 0 0 o
v sin a)ot{l myo(a)oz _wz)} cos ayt + myo(a)oz _wz)cos[ o a)[,t] VOIwaO' FO/ky0 and o)/o)o
Northridge 25 Northridge 26
Undamped Case IV Undamped Case V
» Start with solution below and convert ot » Compute dimensionless C and
sine and cosine terms to a cosine term c v Vv F 2
y = Asin w,t + Bcos at + Focosat Yo (yZ)J (7ymw20—a)2]
() 0 W 0 (] 0 0
v F
A=_"0 B=y,— 0 Mo Vo
@, 0 miwoz -’ ' 4 A a @, 1 Yo%
F A o=tan"| — |=tan F =tan F
y =Ccos(@yt — )+ —— L5 Cos ot 5= tan’l[—j Yo" 1- L
ml\w; — @ B m\wy — @ myoia)0 -?)
Codripro |[Yo 2+ Yo ) ’ lzgcos(wot—ﬁ)Jr F2° oSt
w, * mle? -0’ Yo Yo yom(wo —w )
Nurthrltlge z ﬁurt\ﬁrlulﬁe 2
Undamped Case VI Zero Initial Conditions
. . F . .
* yly, is a function of A  Without forcing (F, = 0), when y, = v, =
oot Vo/ooYo, Folkyo,  myfof—o®) " (,, V 0, the solution is y = 0 for all t
and o/o, AO . . .
« Forcing gives a nonzero solution
TEAY ’Aw  Start with general solution forc =0
7 E’—V\O\ 2 1 \/ky\"‘ o= FO 5 Csinwyt + Dcosa,t Fo cosat
—= | 1 =Y, +Yp =Csina,t+ gt + 10
Vo 1lyoen 1_(.5/“ )2 . kyo Y=YutYp o o m(wg e )
-t ‘ ‘o), = ) :
i l—f%‘;\) *v,=y(0)=0givesC=0
‘\ o\ i o . — —m2
y_C cos{iot— )+ —> /kyy) 2 COSE o %tj Yo = ¥(0) = 0 gives D = -Fy/m/(wy? — ®?)
Yo Yo 1- W/ "f)o¥ _ ( t — t
Calornia pate Liniyersiny O - 2 Calsforia Sate Lnfersity y= 2 COS wt —COS a)O)
Northridge .- Northridge mle; - o*
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Zero Initial Conditions Il

» Rearrange solution forc =y, =v,=0
y =F"2{cos[;) thJ—cos wot}
7
{cos[a) a)ot] —Cos wot}
Joe

F R m_FO_(l o
- 2
@y

yme? ymk  yk

* Plot yk/F, versus oyt with /o, as a
. parameter

Roriimidze g

ky/Fo

Undamped Forced Osciallations yp =vo =0

25 ‘ Ratio parameter
20 is ratio of forcing
ﬂ frequency to
15 il " { natural frequency
J\ w/wa
10
s u ——ratio =
I ‘ 1.10
° I i —ratio =
‘ i 1.05
-5 y ¥ w — ratio =
0.95
-10 I in =
“ —ratio =
0.90
-15 HU 1 LIl
-20 ‘
-25

0O 25 50 75 100 125 150 175 200 225 250
ot

Resonance Condition

Current equation for y/y, has several
terms with 1 — @?/@,? in denominator

+ Solution is not valid when o = o,

* If ® = oy, 1(x) = Fycos wt is proportional
to homogenous equation solution

» Have to get new particular solution

» Use undetermined coefficients
approach starting with y, =t [A sin ot +
B cos wt]

Califoerin State Lniversity
Northridge %

¢ = 0 Resonance Solution Il

* Remember o = o, = (k/m)¥2 here

* Derivatives of y, = t[A sin ot + B cos ot]

* yp' = t{owA cos ot - ®B sin ot] + A sin ot
+ B cos ot

c Vo' = t[-0?Asinwt - w?Bcoswt] +
2 oA cos ot - 2 B sin ot

* Substitute into ODE for c = 0 and m =
ko?: md?yp/diz + ky, = md?y/dt2 +
m o? yp = F,Ccos ot

Califoerin State Lniversity
Northridge .

¢ = 0 Resonance Solution Il

e mt[- o2 Asin ot - ®? B cos ot]
+ m[2 ®Acos ot-2nB sin ot]
+mo?t[Asin ot + B cos ot] = F,cos ot

« After cancellations we have m [ 2 ®A cos
ot - 2 0B sin ot ] = F,cos ot

*» ThisgivesB=0andA=Fy/2mo

* Vp = [Fo/2me] t sin wt

« Particular solution increases without
bound as t increases

35

Examine Damping

» Damped oscillations without external force

—derived (homogenous equation) solutions last
week

— Three cases: underdamping, critical damping,
and underdamping

— All cases show y goes to zero as t increases

— Look at particular solution only to show effect
of forced oscillations

— Effects come from amplitude of oscillations

36
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General Case forc =0

F,ocsin ot

» Convert y,=Csinot+Dcosot=E
cos(mt - 8) to examine amplitude

» C2+D?2=E? and 3 = tan}(C/D)
* Apply this to write y, = E cos(ot - )

F,m(e? - o )cos et

Yp =

M (w2 -0’ f +0’c® mA(wf - o) +a'c?

; [0
(Fom(zug —a)z) =tan l[m o} — o’ j
2 2 2 2.2

37
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Find o that Maximizes C

Foac Fom(a)o2 —a)z)

2 2
C=
\/[mz(wg —wf +w2c2] {mz(a)j —of +w2c2]

_F w202+mz(a)§—a)2)2 3 F,
T2 2 22F [ 2( 2 2.2
m(w0 a))2+wc \/m (a)o a))2+a)c

dc —%[mZZ(a)OZ —a)ZX— 20)+ 2(002] _

E_ [mz(wgiwz)szwzcz]%
w2l " -20) 208" = f-ami o) 270
Rertheidge ¢ = 2m?(af - o) »

Amplitude of y, versus o

c? =2m2(m§fm2) = o’

c2/2m2 > p,2 = k/m

examining C versus o

ma? Co ma? F,

_ 2
_a,07

CZ

2m?

» Maximum amplitude equation not valid if
* Look at behavior of y, = C cos(wt - §) by

» Write dimensionless equation for C,
which has dimensions of length

Northridge

F Fo \/mz(wg —0*f +w'c?

39

Amplitude of y, versus o Il

ma? Co mal F _ 1
2 \2
Fo Fo \/mz(a)g—a)z) +0’c? ¥ (ef — ) +0’c?
m’w;
mwiC _mkC 1

F, mF, \/{ [ © J2:|2 [ o Jz o2
= |+ ===
28 w, ) M ay
« Dimensionless amplitude depends on
o/w, and c2/m2wp,? = c2/mk
* Previous result: (0%/®y?)max = 1 - €2/M2my?

Califoerin State Lniversity
Northridge ©

Dimensionless Damping Amplitude kC/Fq

5 o=
| damping = cloom

= c* = 2.00]
== c* = 1.00

N
. 40\ et
I\

= c* =0.20]

Dimensionless Amplituc

0 05 1 15 2

25

e As
c2/m?@y?
becomes
smaller,
location of
olo, for
maximum
becomes
one and
maximum
amplitude
becomes
Mag/C

ME 501A Seminar in Engineering
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Summary

< General solutions for ODEs with order n
> 2 for constant coefficients only

— Solutions are series of e’ terms where A,
are solutions of algebraic equation

— Special cases: double and complex roots
* Get general solutionasy =y, + yp

— Use method of undetermined coefficients
(simpler than variation of parameters) to
find yp

42
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